
Introduction

With the rapid economic development, industrial 
expansion, and urbanization over the past decades, 
China has experienced serious O3 (ozone) pollution, 
which has attracted much attention from the public, 

government, and researchers [1-4]. O3 is secondary 
air pollution attributed to the photochemical reactions 
between nitrogen oxides (NOx) and volatile organic 
compounds (VOCs) under solar radiation [3]. Motor 
vehicles and industrial activities are the main sources 
of O3 precursors [5]. High concentrations of ozone 
can cause heavy smog in metropolitan cities, harm 
human health, and affect crop yield [6, 7]. From 2013 
to 2016, surface O3 concentrations have increased by 
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Abstract

To investigate the spatial-temporal variations and health impacts of O3 (ozone) in the Central Plains 
Urban Agglomeration, China (CP-UA), multiple and transdisciplinary methods were employed to 
analyze the collected millions of O3 concentrations data. The results showed that the annual average 
concentration of O3 in the CP-UA reduced by 19.7% from 2017 to 2020. O3 monthly concentrations 
exhibited a multimodal structure and a feature of “high in summer and winter, low in spring  
and autumn”. In spatial distribution, the main distribution of O3 concentration was aligned 
in the northwest-southeast direction in the CP-UA. O3 concentrations displayed positive spatial 
autocorrelations. The most polluted cities were distributed in northern CP-UA, forming a high-high 
(HH) agglomeration of O3 concentrations. Cities in southern CP-UA had low O3 concentrations, forming 
a low–low (LL) agglomeration pattern. It was estimated that the premature mortalities attributed to O3 
for respiratory disease in warm months were 15, 960 per year. The premature mortalities decreased 
by 28.7% in 2020 compared to 2017. The rescaled range analysis suggested a declining trend of O3 

concentrations and premature mortalities in the CP-UA. 
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10.8% in China [8]. The increasing O3 concentrations 
caused hundreds of thousands of premature mortalities 
[9], millions of metric tons of losses of key crops [6], 
and billions of dollars in economic losses [10]. O3 has 
become the second most important air pollutant after 
PM2.5 in most cities of China. 

Recently, extensive studies focused on urban 
agglomerations in China such as Beijing-Tianjin-Hebei 
(BTH), Yangtze River Delta (YRD), and Pearl River 
Delta (PRD) [10-14], to clarify the ozone spatiotemporal 
variations, regional transportations, and health 
impacts. The results demonstrated that the surface O3 
concentrations in megacities of China (e.g. Beijing, 
Shanghai, and Shenzhen) were much higher than the 
World Health Organization Standard (maximum daily 
8-h average (MDA8) O3>50 ppbv). As production of 
photochemical reactions, O3 formation regimes relating 
to weather conditions, terrain, and precursors [16], leads 
to the different spatiotemporal patterns of O3 among 
urban agglomerations. To our best knowledge, only a 
few studies focused on the regional O3 pollution in the 
Central Plains Urban Agglomeration (CP-UA). CP-UA 
is the largest urban agglomeration in Central China, 
including 30 prefecture-level cities with a population of 
more than 160 million. CP-UA is seriously constrained 
by resources, and population agglomeration [17], 
causing high levels of PM2.5 and O3 [18]. All cities in 
Henan Province belong to the CP-UA. Zhengzhou, the 

capital city of Henan province and the regional central 
city of the CP-UA as well, was seriously O3 polluted [19, 
20], increasing the mortality risk of cardiovascular and 
respiratory [21]. Other cities in the CP-UA, e.g. Xingtai, 
Handan, Anyang, Jiaozuo, Pingdingshan, Liaocheng, 
and Yuncheng were characterized by industry or 
energy-consuming, which emitted a large amount of O3 
precursors and suffered serious O3 pollution. Previous 
studies found that in Henan Province, due to O3 
pollution, the annual mean relative yield loss of wheat 
was 8.8%-14.1% [22], and the premature mortalities 
caused were about 7000 [23]. Therefore, deep and 
comprehensive research on surface O3 in the CP-UA is 
necessary.     

The present study aims to investigate the spatial-
temporal variations and health impacts of ozone in 
the CP-UA by using multiple and transdisciplinary 
methods. Specifically, we (1) systematically characterize 
the annual, seasonal, monthly, and diurnal variations of 
ozone concentrations, (2) analyze the spatial patterns 
and variations of ozone, and (3) estimate the premature 
mortality attributed to O3 exposure. Our findings are 
conducive to improving the understanding of the spatial-
temporal patterns and the mechanisms of O3 pollution in 
the CP-UA. Meanwhile, the findings provide scientific 
support for determining the efficient approach for O3 
reduction in CP-UA. 

Fig. 1. Location and included cities of the Central Plains Urban Agglomeration (CP-UA) in China (AYA: Anyang, BBU: Bengbu, BZH: 
Bozhou, CZH: Changzhi, FYA: Fuyang, HBE: Huaibei, HBI: Hebi, HDA: Handan, HZE: Heze, JCH: Jincheng, JYU: Jiyuan, JZU: 
Jiaozuo, KFE: Kaifeng, LCH: Liaocheng, LHE: Luohe, LYA: Luoyang, NYA: Nanyang, PDS: Pingdingshan, PYA: Puyang, SMX: 
Sanmenxia, SQI: Shangqiu, SZH: Suzhou, XCH: Xuchang, XTA: Xingtai, XXI: Xinxiang, XYA: Xinyang, YCH: Yuncheng, ZKO: 
Zhoukou, ZMD: Zhumadian, ZZH: Zhengzhou). The blue dots represent O3 monitoring sites. 
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Materials and Methods

Study Area

The CP-UA (31.4°N-37.8°N, 110.2°E-118.2°E) is 
located in central China (Fig. 1), including 30 cities: all 
18 cities in Henan Province, Changzhi, Jincheng, and 
Yuncheng in Shanxi Province; Liaocheng and Heze in 
Shandong Province; Huaibei, Bengbu, Suzhou, Fuyang, 
and Bozhou in Anhui Province; and Xingtai and Handan 
in Hebei Province [24]. The CP-UA covers 287,000 km2 
with a population of more than 160 million. 

Materials

A long time series of hourly concentrations  
of O3 from January 2017 to December 2020 in the 
CP-UA were obtained from the national air quality 
monitoring network operated by China National 
Environmental Monitoring Center. Due to the absence 
of air quality monitoring site in Jiyuan, O3 data was 
lacking. O3 concentration was measured by Ultraviolet 
photometer or Differential Optical Absorption 
Spectroscopy. The instrumental operation, maintenance, 
and quality assurance/quality control are conducted 
according to the China Environmental Protection 
Standards “HJ 818-2018”. We used O3 daily maximum 
8-hour sliding average (MDA8-O3) concentration as 
the O3 level of that day and used the 90th percentile 
of MDA8-O3 as the annual assessment standard [25]. 
In this study, the seasonal, monthly (spring: March to 
May, summer: June to August, autumn: September to 
November, winter: January, February, and December), 
and daily variations of O3 were calculated using the 
mean of the MDA8-O3 in each city. The diurnal 
variations of O3 concentrations were calculated using 
the hourly O3 concentration of each city.

Methods

Kernel Density Estimation

Kernel density estimation was employed to calculate 
the O3 density function, which is defined as:

               (1)

where n is the number of samples, h indicates the 
bandwidth, and K represents the kernel weighting 
function. In the present study, the Epanechnikov kernel 
and Silverman’s bandwidth were used [26].

Standard Deviational Ellipse

The standard deviation ellipse (SDE), namely 
directional distribution [27], demonstrates elements in 
the main distribution area through four key parameters, 
i.e., center point, major axis, minor axis, and azimuth. 

The mean center is the central location for the entire 
dataset. The major and minor axes of the ellipse 
suggest the direction and range of the data distribution, 
respectively [28]. Azimuth defines the main trend 
direction. In this paper, the spatial feature of ozone in 
the CP-UA was identified by SDE. The main parameters 
of SDE are calculated as follows:

Mean Center:

                         (2)

                         (3)

where xi and yi are the coordinates for i, wi represents the 
weight value, and n is equal to the total number of sites.

The angle of rotation is calculated as:

                           (4)

               (5)

(6)

                        (7)

where, x̄ i and ȳi indicate the deviation of the 
xy-coordinates from the Mean Center.

The standard deviations for the x-axis and y-axis 
are: 

               (8)

                (9)

Rescaled Range (R/S) Analysis

In this paper, the R/S analysis was employed to 
discuss the changing trend of O3 concentration. The R/S 
analysis proposed by Hurst [29], is the ratio between 
range and standard deviation, which is calculated as 
follows [30]: 

                  (10)

          (11)

(12)
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 (13)

where x(i), x(i,j), R(j), and S(j) are the mean, cumulative 
dispersion, range, and standard deviation of the given 
time series, respectively. If xi is a random sequence, 
then:

                     (14)

where H indicates the Hurst index of the time series.
The H value ranges from 0 to 1. If H = 0.5, 

it indicates that the O3 time series is random and there 
is no long-term relationship; If 0.5<H<1, it suggests 
that the O3 time series has long-term persistence. 
The change in O3 concentration in the future is 
consistent with the change trend in the past. The closer 
H is to 1, the stronger the persistence; If 0<H<0.5, 
it represents the O3 time series is anti-sustainability. 
The change in O3 concentration in the future is opposite 
to the change trend in the past. The closer H is to 0, 
the stronger the anti- sustainability. 

Global and Local Spatial Autocorrelation 
Analysis

The spatial distributions of O3 concentrations are 
related to spatiotemporal and geospatial processes. 
Therefore, the global Moran’s I index was employed to 
quantitatively determine the global autocorrelation of 
O3 in the CPUA. Detailed descriptions for the global 
Moran’s I can be found in previous studies [31, 32]. 
The global Moran’s I ranges from 0 to 1. A negative 
(positive) index suggests a negative (positive) correlation 
and the smaller (greater) the index, the stronger the 
spatial dispersion (agglomeration) of the O3, while an 
IGlobal of 0 indicates no spatial autocorrelation. 

Global spatial autocorrelation can only judge 
whether the geographical variables have spatial 
autocorrelation but cannot reflect the characteristics of 
an urban spatial agglomeration within a region [17]. 
Therefore, the local Moran’s I index was used to identify 
the distribution and agglomeration patterns of O3 
in the CPUA. Based on the calculated local Moran’s I 
index, the spatial association modes can be classified 
into four types [33]: high-high clustering type 
(hereinafter HH), low-low clustering type (LL), low-
high clustering type (LH), and high-low clustering 
type (HL). The index that fails the significance test is 
classified as not significant.

Human Health Impacts

High O3 concentration can cause respiratory 
diseases, and the premature mortality attributed to O3 
exposure is estimated as formulas [34]:

              (15)

where ΔM represents the excess mortalities attributable 
to O3 exposure, yo is the baseline mortality rate, N 
indicates the exposed population, and RR is the relative 
risk. RR is calculated by:

              (16)

where β denotes the concentration-response coefficient, 
C and C0 represent O3 concentration and reference 
concentration, respectively. 

In this study, the population data are from the 
seventh population census of China. The mortality rate 
for respiratory disease during 2017-2020 is collected 
from China Statistical Yearbook issues 2018, 2019, 
2020, and 2021 (http://www.stats.gov.cn/tjsj/ndsj/), 
which is 67.2, 68.02, 65.02, and 55.36, respectively. 
The RR is 1.04, a 20 μg/m3 increase in MDA8-O3 
concentration is associated with a 4% increase in RR of 
death from respiratory disease, and the recommended 
value of C0 is 75.2 µg/m3 [34].   

Results and Discussion

Temporal Variations in O3 in the Central Plains 
Urban Agglomeration

Annual Variation 

Fig. 2 shows the estimated kernel density and  
over-standard rates of the O3 concentrations in the 
CP-UA from 2017 to 2020. Overall, the annual average 
concentration of O3 (90th percentile of MDA8-O3) 
in the CP-UA was gradually reduced from 2017. 
Specifically, in 2020 the yearly average O3 concentration 
amounted to 203.6 μg/m3, and was reduced by 19.7% 
relative to that in 2017 (253.6 μg/m3). As displayed in 
Fig. 2a), the peak of the kernel-density curves became 
steeper and moved to the left from 2017 to 2020, which 
indicated that O3 concentrations in most of the cities of 
the CP-UA were continuously reduced. The upper tail 
of the density curves decreased over time, suggesting 
that cities with high O3 concentrations (more than 
250 μg/m3), had substantial decrease in O3 concentration. 
In 2017 the number of cities with annual O3
concentrations greater than 220 μg/m3 was 24, while 
the number decreased to 2 in 2020. As shown in  
Fig. 2b), the proportion of MAD8-O3 exceeded the 
China National Ambient Air Quality Standards I 
(CAAQS grade I; 100 μg/m3) in CP-UA over 2017-2020 
was 81.6%. And the proportions exceeded the Grade 2 
limit (160 μg/m3) was 39.3%, indicating severe O3 
pollution. The proportion that exceeded the Grade 
2 limit during 2017-2020 was 44.3%, 42.5%, 41.0%,  
and 29.3%, respectively, suggesting the reduction  
of O3 pollution in the CP-UA. In other urban 
agglomerations of China, e.g., BTH, PRD, and YRD, 
O3 concentrations also decreased from 2017 to 2020 
[35], which indicated the Air Pollution Prevention  
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and Control Action Plan formulated by China 
government worked as intended. 

Monthly Variation

The monthly characteristics of O3 concentrations in 
the CP-UA over 2017-2020 are illustrated in Fig. 3a). 
Previous studies have pointed out that monthly variation 
characteristics in O3 are related to latitude in China. 
The unimodal structure is generally found for latitudes 
over 35°N, whereas the bimodal structure is in most of 
the cases identified south of 35°N [36]. CP-UA covers 
a latitude of 31.4°N-37.8°N. A multimodal structure 
of O3 monthly variation was found in CP-UA in this 
study. The monthly average O3 concentrations showed 
an increasing trend from February to June, a decreasing 
trend from July to October, and an increasing trend in 
November and December. The highest monthly average 
concentrations occurred in June, with 195.5 μg/m3.
As displayed in Fig. 3b), the seasonal averages of the 
O3 concentrations in the CP-UA during 2017-2020 
in spring, summer, autumn, and winter were 149.8, 
171.2, 131.1, and 160.0 μg/m3, respectively. The O3 
concentrations showed a feature of “high in summer 
and winter, low in spring and autumn” in the CP-UA, 
which is different from the feature of “high in spring 

and summer, low in autumn and winter” in the YRD 
[35]. The meteorological conditions are the important 
factor that influences the monthly variation of O3 in the 
CP-UA. In summer, the relatively high temperature and 
strong radiation enhance the photochemical reactions, 
which leads to increased O3 production. In winter, most 
regions in China have the lowest O3 levels [35, 36], 
while a high O3 concentration was observed in the CP-
UA in this study. An increasing winter-spring O3 and 
increasing association of high ozone with winter haze 
events were found in the North China Plain [39]. We 
inferred that the high-level O3 in winter in the CP-UA 
may be related to PM2.5 concentration. The collaborative 
governance of PM2.5 and O3 become an important issue 
in the CP-UA. 

Diurnal Variation

As the photochemical reactions product, O3 
concentrations are closely related to solar radiation. 
As shown in Fig. 4, The diurnal variation of O3 
concentrations exhibited a unimodal character in the 
CP-UA, with high O3 concentrations in the daytime 
and low in the nighttime, which is consistent with other 
regions of China [40]. In the daytime, with the sun rising 
and solar radiation enhanced, anthropogenic precursors 
such as VOCs and NOx participate in photochemical 
reactions and promote the formation of O3 [41]. 

Fig. 2. a) Kernel-density estimates of annual mean O3 
concentrations and b) the annual over-standard rate of the O3 
concentrations in the CP-UA in 2017-2020.

Fig. 3. a) Monthly and b) seasonal variation of MDA8-O3 in 
the CP-UA over 2017-2020. Shown are the median (central 
horizontal bar within the boxes), 25th and 75th percentiles (lower 
and upper bars of the boxes, respectively), and minimum and 
maximum (lower and upper whiskers, respectively).
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The O3 concentration increased during 8:00~16:00 (LST) 
and reached a maximum value of 116.1 μg/m3 at 
16:00 (Fig. 4b). Then the O3 concentration decreased 
continually. During the night time, O3 can be eliminated 
by NOx titration reactions. Recent studies suggested 
that particulate matter can also react with O3 and 
eliminate it from the atmosphere [42]. In June and July, 
the O3 concentration was still high at 20:00 (Fig. 4a). 
O3 concentration above 150 μg/m3 lasted about 10 hours 
each day in June. 

Spatial Distributions in O3 in Central Plains 
Urban Agglomeration

Standard Deviational Ellipse Analysis

The overall variations in the spatial pattern of O3 
in the CP-UA in different years and seasons were 
characterized by SDE analysis. As displayed in Fig. 5a), 
the main distribution of O3 concentration was aligned 
in the northwest-southeast direction in the CP-UA.  

The azimuth of the ellipse decreased from 123.2° in 
2017 to 120.5° in 2020 (Table 1), which suggested the 
ellipse moved northward. The mean centers detected 
by SDE were located in northeastern Zhengzhou. From 
2017 to 2020, the center of O3 concentration across 
the CP-UA moved from 34.75°N, 114.05°E to 34.72°N, 
114.09°E, which indicated a greater O3 concentration 
decrease in northwestern CP-UA. The major axes of the 
ellipses increased from 211.6 to 220.5 km. The increase 
of the major axes illustrated the spatial aggregation 
tendency and the spatial changes in O3 concentration 
from 2017 to 2020. The ratio between the major and 
minor axes of the ellipses presented an increasing 
tendency from 2017 to 2020, indicating the enhanced 
trend of directional distribution. As displayed in  
Fig. 5b), the seasonal variation of the standard deviation 
ellipse was more obvious than the annual variation. In 
summer and winter, the mean centers were located in 
Zhengzhou, and in spring and winter, the mean centers 
moved to Kaifeng. In winter, the major axes were the 
shortest (211.9 km) and the minor axes were the longest  
(176.3 km) in four seasons, and the ratio between 
the major and minor axes was lowest than in other 
seasons. This suggested that spatial dispersion of O3 

Fig. 4. Diurnal variations of O3 concentrations in the CP-UA 
during 2017-2020.

Fig. 5. Standard ellipse deviation distribution in a) different 
years and b) different seasons in the CP-UA. 
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concentrations in the CP-UA was relatively strong in 
winter. In autumn, the directional distribution of O3 
concentrations was stronger than in other seasons.  
In summer, the area covered by the ellipse was  
the smallest (117026 km2), accounting for 58.4% 
of the CP-UA. 

Spatial Autocorrelation of O3 Concentrations

The global Moran’s I under different years and 
seasons in the CP-UA were calculated to discuss the 
O3 spatial correlation. As displayed in Fig. 6a), from 
2017 to 2020, the annual Moran’s I was 1.63, 1.85, 
1.63, and 2.09, respectively, and all the values passed 
the significance test. The positive annual Moran’s 
I suggested the positive spatial autocorrelation and  
the spatial agglomeration of O3 concentrations in 
the CP-UA. This indicated that O3 in a city can be 
affected by its neighboring cities. In a previous study, 
it was found that O3 concentrations were spatially 
agglomerated in BTH and PRD, but spatially dispersed 
in Chengdu-Chonqing [35]. The highest global Moran’s 
I in CP-UA was found in summer (2.59), indicating 
a strengthening agglomerated distribution of O3 
concentrations. We inferred that the photochemical 
reactions were strong in summer which lead to the 
formation and accumulation of O3. Hence, regional 
cooperation across cities is necessary. To identify the 
distribution and agglomeration patterns of O3 pollution 
in each city of CP-UA, local spatial autocorrelation 
analysis was employed in this study. As shown in  
Fig. 6b), the most polluted cities were distributed 
in northern CP-UA, forming a high-high (HH) 
agglomeration of O3 concentration. The HH 
agglomeration cities including Xingtai, Handan, 
Changzhi, Liaocheng, Anyang, Jiaozuo, and Xinxiang 
are mostly industrial cities with intensive anthropogenic 
emissions and insufficient precipitation. Cities in 
southern CP-UA had low O3 concentrations, forming 
a low-low (LL) agglomeration (Fig. 6b). The LL 
agglomeration cities included Zhoukou, Zhumadian, 

Xinyang, Fuyang, Bengbu, and Bozhou. Those cities 
are all located in the south of the North-South climatic 
transition zone, which means abundant precipitation. 
To sum up, O3 control by any individual city was 
insufficient, and joint efforts across the CP-UA would 
be necessary to reduce regional O3 pollution. More 
stringent measures should be taken in the northern  
CP-UA.

Items Variables
Parameters

Azimuth/degree Mean center Major axes/km Minor axes/km Area/km2

Year

2017 123.20 114.05°E, 34.75°N 211.6 176.3 117189

2018 125.41 114.08°E, 34.72°N 211.3 175.8 116702

2019 125.19 114.10°E, 34.72°N 207.9 179.1 117017

2020 120.53 114.09°E, 34.72°N 220.5 176.1 121953

Season

Spring 121.39 114.16°E, 34.71°N 217.0 174.6 119008

Summer 121.96 114.12°E, 34.76°N 212.4 175.4 117026

Autumn 124.15 114.22°E, 34.67°N 217.2 175.1 119483

Winter 118.81 114.09°E, 34.75°N 211.9 176.3 117404

Table 1. Parameters of standard deviation ellipse in the Central Plains Urban Agglomeration.

Fig. 6. a) Global Moran’s I index and b) spatial agglomeration of 
O3 concentrations in the CP-UA in 2017-2020.
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Human Health Impacts

To estimate O3 impacts on health in the CP-UA, the 
premature mortality attributed to O3 in warm months 

(from April to September) was calculated. As displayed 
in Fig. 7, from 2017 to 2020, the premature mortality 
related to O3 for respiratory disease in the CP-UA was 
17438, 17087, 16765, and 12549, respectively, which was 

Fig. 8. Hurst index of O3 concentration in the CP-UA.

Fig. 7. The distribution of premature mortality attributed to O3 exposure for respiratory disease in warm seasons (from April to September) 
in the CP-UA.
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much higher than in the YRD (5889 per year from 2015 
to 2019) [34]. The reduction of premature mortalities 
in the CP-UA indicated that the measures taken by 
the Chinese government to control O3 pollution have 
achieved good results. Among the 30 cities in the CP-
UA, Zhengzhou was estimated to have the highest 
premature mortalities, with 1556, 1382, 1387, and 
1110 cases in 2017, 2018, 2019, and 2020, respectively. 
Zhengzhou is the central city of the CP-UA, with  
a population of 12.6 million. The top ten cities with 
mean premature mortality from 2017 to 2020 related 
to O3 were Zhengzhou (1358), Handan (1035), Nanyang 
(868), Heze (854), Xingtai (819), Zhoukou (816), 
Luoyang (718), Xinxiang (668), Shangqiu (693), and 
Anyang (613), respectively. In contrast, the city with 
the lowest premature deaths was Hebi due to its small 
population (1.566 million) and low O3 concentration
(147 μg/m3 for a four-year average), with 191, 184, 
174, and 137 cases in 2017, 2018, 2019, and 2020, 
respectively. We found that the population in some 
cities varies little, while the estimated premature 
mortalities vary largely. For example, the population 
of Xinxiang and Xinyang were 6251929 and 6234401, 
respectively, and the premature mortalities were 668 
and 480, respectively. This suggested that premature 
mortality is sensitive to O3 concentration. As can be 
seen from Equation 16, premature mortality increase 
with O3 concentration exponentially.          

The time-series domain rescaling analysis method 
was employed to calculate the Hurst index of O3 
concentration in the CP-UA. As displayed in Fig. 8, 
the Hurst index ranged from 0.59 to 0.85, all larger 
than 0.5, indicating the time series of O3 was long-
term persistent, that is, the change in O3 concentration 
in the future is consistent with the changing trend in 
the past. As discussed in the previous section, the 
O3 concentration in the CP-UA from 2017 to 2020 
was gradually reduced. This suggested that the O3 
concentration in the CP-UA will continue to decline in 
the future. Therefore, we inferred that the premature 
mortality attributed to O3 in the CP-UA will continue to 
decline. Luoyang, Changzhi, Xinxiang, Liaocheng, and 
Hebi ranked in the top 5 in terms of the Hurst index, 
which indicated that these cities are more likely to have 
a decline in O3 concentration and premature mortality. 

Conclusion

In this study, multiple transdisciplinary methods, 
including geographical analysis and spatial statistics, 
were used to investigate the spatiotemporal distribution 
variations and the human health impacts of O3 in the 
CP-UA. The results of the study showed that the annual 
average concentration of O3 in the CP-UA reduced 
by 19.7% in 2020, as compared to 2017. While, the 
proportion of MAD8-O3 that exceeded the Grade 2 
limit in 2020 was 29.3%, indicating still serious O3 
pollution. O3 concentrations showed a multimodal 

structure trend with the month in the CP-UA, with the 
highest concentrations in June (195.5 μg/m3). The O3 
concentrations showed a feature of “high in summer and 
winter, low in spring and autumn” in CP-UA. In diurnal 
changes, O3 concentrations exhibited a unimodal trend, 
with high in the daytime and low in the nighttime. 
Concerning spatial distribution, the main distribution of 
O3 concentration was aligned in the northwest-southeast 
direction for the CP-UA. From 2017 to 2020, the centers 
of O3 concentrations across the CP-UA moved southeast. 
In summer and winter, the mean centers were located 
in Zhengzhou, and in spring and winter the mean 
centers moved to Kaifeng. O3 concentrations exhibited 
positive spatial autocorrelations in the CP-UA. The 
spatial autocorrelation was strongest in summer. The 
most polluted cities were distributed in northern CP-
UA, including Xingtai, Handan, Changzhi, Liaocheng, 
Anyang, Jiaozuo, and Xinxiang, forming a high-high 
(HH) agglomeration of O3 concentration. Cities in 
southern CP-UA including Zhoukou, Zhumadian, 
Xinyang, Fuyang, Bengbu, and Bozhou, had low O3 
concentrations, forming a low-low (LL) agglomeration. 
According to our estimates, the premature mortality 
attributed to O3 for respiratory disease in warm months 
was 15960 per year. The premature mortalities decreased 
by 28.7% in 2020 compared to 2017. Furthermore, the 
changing trend of O3 concentration was predicted by 
rescaled range analysis. The calculated Hurst index 
of O3 concentrations in all cities in the CP-UA was all 
larger than 0.5, indicating the declining trend of O3 
concentrations and premature mortalities in the CP-UA.
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